Как устроен и как работает тепловой насос

Тепловой насос это один из способов обогрева жилых домов. Он является альтернативой (или дополнением) традиционному газовому отоплению. Кроме функции обогрева он также работает и на пассивное охлаждение здания, тем самым совмещая в себе две функции: обогрев зимой и охлаждение летом.

Принцип работы теплового насоса

Разберем общий принцип работы теплового насоса для отопления дома. Для образования тепла в насосе встроен внутренний контур, по которому движется хладагент, соединенный с трубами в доме при помощи специального теплообменника. Так же функционирует внешний контур, отвечающий за образование тепла от внешнего источника.

Разберем по пунктам, как работает отопление с помощью теплового насоса:

  1. внешний контур генерирует тепловую энергию, которую поглощает хладагент, находящийся в газообразном состоянии. А температура газа, поднявшаяся до +10ºС, уже будет оптимальна для начала процесса работы;
  2. любой вид тепловых насосов имеет составную часть в виде компрессора. При повышении давления хладагент превращается в воду. При этом температура воды достигает +65ºС;
  3. теплообменник в свою очередь отдает тепло воде, находящейся в этот момент в системе отопления;
  4. процесс, описанный выше, происходит заново, потому что дроссельный клапан и капельник понижают давление. От этого хладагент опять переходит в газообразное состояние.

Рассмотрев принцип работы теплового насоса для отопления, становится ясно, что никаких сложностей нет в этой системе обогрева.

Как работает тепловой насос

Конструкцию «умножителя тепла» предложил еще в 1852 году лорд Кельвин. В его работе использовался основной принцип теплового насоса – постепенный отбор низкотемпературного тепла, его накопление и отдача в виде энергии с высокой температурой. Данный процесс был описан «циклом Карно» в далеком 1824 году.

С тех пор прошло немало лет, а с тепловым насосом сейчас знаком каждый ребенок и стоит он на любой кухне. Вы не ослышались, ведь ваш холодильник – это тот же тепловой насос, только работающий в других целях. Вы ведь замечали, как нагревается задняя стенка холодильника? А задумывались ли вы о том, что его повышенная температура – не что иное, как тепло, отобранное агрегатом у продуктов, которые вы загрузили в него после похода в супермаркет.

Принцип действия теплового насоса

Похожим образом функционирует и тепловой насос. Основным его элементом является мощный компрессор, позволяющий создавать высокое давление. К нему присоединен испаритель – радиатор из тонких трубок с высокой теплопроводностью. При работе компрессор нагнетает теплоноситель, в роли которого выступает хладагент. Это вещество способно кипеть и испаряться при низкой температуре. Компрессор создает давление в десятки атмосфер, поэтому хладагент испаряется даже при отрицательных температурах. На входе в испаритель сечение трубопровода уменьшается до диаметра в десятые доли миллиметра, происходит распыление хладагента и он переходит из жидкой фазы в газообразное состояние, при этом поглощая тепло.

Далее на пути теплоносителя установлен конденсатор, в котором хладагент отдаёт тепло радиатору, охлаждается и снова превращается в жидкость, а затем возвращается в компрессор. Такой цикл повторяется многократно. При этом доля энергии, которую потребляет компрессор теплового агрегата, составляет около 20% от производимого им количества теплоты. Остальные 80% он «заимствует» у окружающей среды. Так как тепловой энергией обладает любой предмет, имеющий температуру выше абсолютного нуля, отобрать эту энергию можно при условии, что температура рабочего тела будет еще ниже. С этой ролью отлично справляются современные хладагенты.

Тепловую энергию насос может брать как из геотермальных источников, так и из атмосферы. Важной особенностью современных агрегатов является возможность работы не только на обогрев, но и на кондиционирование помещения в тёплое время года.

Читайте также:  Изготовление ракетной печи своими руками

Современные тепловые насосы – высокотехнологичные агрегаты

Виды тепловых насосов

Классифицироваться оборудование этого типа может по источнику потребляемого тепла и расположению внешнего контура. В первом случае различают системы:

  1. Грунт-вода. В качестве теплоносителя в таком оборудовании используется вода или антифриз. Контур же располагается под землей.
  2. Вода-вода. Трубы системы отопления этого типа прокладываются в каком-нибудь располагающимся поблизости водоеме.
  3. Воздух-вода. В этом случае в качестве источника тепла используется воздух.
  4. Воздух-воздух. В качестве и теплоносителя, и источника тепла в данном случае выступает воздух.

По расположению контура системы отопления с тепловым насосом подразделяются на вертикальные и горизонтальные.

Как работает насос

Как работает обычный масляный электронагреватель? Он подключается к сети, потребляет 1кВт электроэнергии и выдает 1кВт тепла. Такой регулярный обогрев приводит к быстрому разорению.

Образно тепловой насос является тем же самым электронагревателем, но с более высоким КПД. Он расходует 1кВт электроэнергии и превращает его в 3-5кВт тепла. Это уникальность насоса: вы получаете 2-4кВт тепловой энергии бесплатно за счет природной энергии.

Соотношение затраченной и полученной энергии называется коэффициентом преобразования – СОР. Для разных типов тепловых насосов СОР отличается и зависит от:

  • Температуры источника тепла – среды, из которой черпается энергия. Чем выше и стабильнее температура в течение года, тем выше КПД насоса
  • Температуры теплоносителя в системе отопления. Тепловые насосы рассчитаны под низкотемпературную систему отопления – радиаторы большой площади, теплые полы, фанкойлы, которые работают при температуре подачи 35-50˚С. Если рабочая температура в системе отопления выше указанной, то КПД теплового насоса снижается.

О том, как и за счет чего происходит преобразования тепла, подробно рассматривается в статье принцип работы теплового насоса.

Методика расчета мощности теплового насоса

Помимо определения оптимального источника энергии, потребуется высчитать необходимую для обогрева мощность теплонасоса. Зависит она от величины теплопотерь здания. Произведем расчет мощности теплового насоса для отопления дома на конкретном примере.

Для этого используем формулу Q=k*V*∆T, где

  • Q — это теплопотери (ккал/час). 1 кВт/ч = 860 ккал/ч;
  • V — объем дома в м3 (площадь умножаем на высоту потолков);
  • ∆Т – отношение минимальных температур снаружи и внутри помещения в самый холодный период года, °С. Из внутренней tº вычитаем наружную;
  • k — обобщенный коэффициент теплопередачи здания. Для кирпичного здания с кладкой в два слоя k=1; для хорошо утепленного здания k=0,6.

Таким образом, расчет мощности теплонасоса для отопления кирпичного дома в 100 кв.м и высотой потолков 2,5 м, при перепаде ttº от -30º на улице до +20º внутри, будет таковым:

Q = (100х2.5) х (20- (-30)) х 1 = 12500 ккал/час

12500/860= 14,53 кВт. То есть, для стандартного кирпичного дома площадью 100 м понадобится 14-килловатное устройство.

Выбор типа и мощности теплонасоса потребитель принимает, исходя из ряда условий:

  • географические особенности местности (близость водоемов, наличие грунтовых вод, свободного участка под коллектор);
  • особенности климата (температуры);
  • тип и внутренний объем помещения;
  • финансовые возможности.

Учитывая все вышеизложенные аспекты, вы сможете сделать оптимальный выбор оборудования. Для более эффективного и правильного подбора теплового насоса лучше обратиться к специалистам, они смогут сделать более подробные расчеты и предоставить экономическую целесообразность установки оборудования.

Как устроен тепловой насос и система отопления с ним?

Тепловой насос интегрирован в систему отопления, которая состоит из 2-х контуров + третий контур — система самого насоса. По внешнему контуру циркулирует незамерзающий теплоноситель, который забирает на себя тепло из окружающего пространства.

Читайте также:  Оборудование для промывки теплообменников и систем отопления

Попадая в тепловой насос, точнее его испаритель, теплоноситель отдает в среднем от 4 до 7 °C хладагенту теплового насоса. А его температура кипения составляет -10 °C. Вследствие этого хладагент закипает с последующим переходом в газообразное состояние. Теплоноситель внешнего контура, уже охлажденный уходит на следующий «виток» по системе для набора температуры.

В составе функционального контура теплового насоса «числятся»:

  • испаритель;
  • компрессор (электрический);
  • капилляр;
  • конденсатор;
  • хладагент;
  • терморегулирующее управляющее устройство.

Процесс выглядит приблизительно так!

«Закипевший» в испарителе хладагент по трубопроводу поступает в компрессор, работающих от электроэнергии. Этот «трудяга» сжимает газообразный хладагент до высокого давления, что, соответственно, приводит к повышению его температуры.

Теперь уже горячий газ далее попадает во другой теплообменник, который называется конденсатором. Здесь тепло хладагента передается воздуху помещения или теплоносителю, который циркулирует по внутреннему контуру системы отопления.

Хладагент остывает, одновременно переходя в состояние жидкости. Затем он проходит через капиллярный редукционный клапан, где «теряет» давление и вновь попадает в испаритель.

Цикл замкнулся и готов к повтору!

Тепловой насос своими руками. Сборка и установка

Конечно, первичные вложения на организацию отопления дома согласно этой технологии весьма высоки. Поэтому у многих обывателей, заинтересовавшихся этой сверхэконмичной системой, возникает желание хоть немного сэкономить, соорудив ее самостоятельно.

Для этого нужно:

  • Приобрести компрессор. Подойдет любой работоспособный агрегат от бытовой сплит-системы кондиционирования.
  • Соорудить конденсатор. В самом простом случае в качестве оного может выступать обычный бак из нержавейки, объем которого составляет 100 литров. Он разрезается напополам, внутри его монтируется змеевик из медной трубы малого диаметра. Толщина стенки змеевика должна быть не ниже одного миллиметра. После раскрепления змеевика необходимо обратно сварить бак в целостную конструкцию, соблюдая условия герметичности.
  • Собрать испаритель. Это может быть и пластиковая 60–80-литровая емкость с вмонтированной в нее трубой на ¾ дюйма.
  • Для организации внешнего контура, расположенного в грунте, лучше использовать современные металлопластиковые трубы – они намного более долговечные, нежели классические металлические и монтаж их гораздо надежнее и быстрее.

Осталось только пригласить мастера по холодильному оборудованию, чтобы он, используя специализированную оснастку, качественно загерметизировал все стыки системы и заправил ее фреоном.

Смотрите видео о монтаже теплового насоса Daikin Altherma:

На этом монтаж теплогенерирующей установки заканчивается. Можно пользоваться всеми ее преимуществами, главным из которых является низкое потребление энергоресурса – электроэнергии при значительной мощности теплогенерации.

Мы подобрали для Вас ещё восемь полезных статей, смотрите далее.

  • Медные трубы и фитинги для водопровода — гарантия качества на 200 лет!
  • Канализация септик для частного дома что это такое, разновидности, выбор
  • Алюминиевые радиаторы отопления: преимущества, технические характеристики и особенности установки
  • Чем хороша пластиковая крышка на колодец: обзор производителей
  • Как быстро сделать систему водоснабжения частного дома из колодца своими руками?
  • Установка кондиционера своими руками и правила его использования
  • Основные требования к дымоходу для газового котла: нормы и правила
  • Как выбрать трубы для канализации в частном доме

Особенности установки

  • Автономность. Оборудование можно вынести и смонтировать в любом месте. Главное предусмотреть бесперебойную подачу электричества.
  • Не сложен в уходе и обслуживании. Это бесшумное оборудование, о котором можно забыть после его установки.
  • Пожаробезопасность. Тепловой насос не использует для своей работы газ и древесину, поэтому вероятность возгорания сведена к минимуму. Хладагент является негорючим летучим газом. Детали оборудования не нагревается до пожароопасных температур.
  • Компактность. Тепловой насос представляет собой 2 блока, которые соединены трубопроводами. Внутренний блок не требует выделенного помещения, впишется в рамки существующего задания.

Как выбрать нужный тепловой насос

Если вы живете в зоне умеренного климата — например, на Северо-Западе — то наиболее эффективный вариант для вас — тепловой насос, использующий тепло земли. Причем, лучше установить вертикальный вариант теплонасоса — особенно, если ваш дом находится на скальных породах, где найти свободный обширный участок земли проблематично. Но такой тип теплового насоса наиболее дорог по сумме капитальных затрат.

В зоне с мягким климатом — например, в Сочи — можно установить тепловой насос «воздух-вода», который не требует чрезмерных капитальных затрат и особенно эффективен в местности, где сезонные колебания температур сравнительно невелики.

В зависимости от принципа действия, бывают электрические тепловые насосы и газовые тепловые насосы. Более популярны модели, работающие от электричества.

Горизонтальный тепловой насос

Еще одно важное замечание. Хорошей идеей являются комбинированные модели тепловых насосов, которые совмещают классический вариант теплонасоса с газовым или электрическим нагревателем. Такие нагреватели могут применяться при неблагоприятных погодных условиях, когда эффективность теплового насоса снижается. Как уже говорилось, особенно снижение эффективности свойственно тепловым насосам «воздух-вода» и «воздух-воздух».

Комбинация этих двух источников тепла позволяет снизить стоимость капитальных затрат и увеличить срок окупаемости теплонасосной установки.

Что такое тепловой насос и как он работает?

Тепловые насосы относятся к категории энергосберегающего оборудования. Они позволяют использовать общедоступное тепло грунта, грунтовых вод, рек, водоемов, окружающего воздуха для нагрева воздуха и воды в доме.

— Главное достоинство теплового насоса в том, что, потребляя один киловатт электрической энергии, в зависимости от условий он выдает от 3 до 5 кВт тепловой, — объясняет Юрий Григоренко, инженер компании «Энергео». — Соответственно, в отличие от электрического котла, к тепловому насосу требуется подведение в 3−5 раза меньшей установленной мощности. А это важно. Дело в том, что далеко не везде электроснабжающая организация может выделить для домовладельцев требуемую мощность в 10−30 кВт, необходимых для работы электрокотлов. В то же время 5−10 кВт выделенной мощности может быть более чем достаточно для отопления и покрытия общедомовых бытовых нужд в случае использования теплового насоса. Особенно остро этот вопрос стоит для домов большой площади.

Тепловой насос представляет собой установку, визуально напоминающую домашний холодильник. Особых требований к месту монтажа нет, для него не нужен дымоход или вентиляция. Установка теплового насоса, в отличие от газового оборудования, не требует каких-либо согласований проектной документации.

Тепловые насосы не только выглядят как холодильник, но и работают по тому же принципу. Как происходит отбор тепла?

Низкопотенциальное тепло принимается тепловым насосом в теплообменнике-испарителе и передается хладагенту — веществу с низкой температурой кипения. Хладагент, получив определенное количество теплоты, испаряется и в газообразном состоянии поступает в компрессор. Компрессор сжимает его до высокого давления, повышая тем самым температуру. Далее газообразный хладагент поступает в следующий теплообменник — конденсатор. В нем происходит передача теплоты высокого потенциала теплоносителю системы отопления и горячего водоснабжения. После конденсатора хладагент проходит через редукционный клапан, где давление и температура снижаются до первоначальных параметров перед теплообменником-испарителем. Цикл замыкается и повторяется снова.

В зависимости от источника тепла различают типы тепловых насосов: «грунт-вода» (используется тепло грунта и грунтовых вод), «воздух-вода» (используем тепло атмосферного воздуха или системы вентиляции) и другие.

Например, забор тепла из грунта может осуществляться с помощью горизонтального геотермального контура (системы пластиковых труб на глубине 1,2−1,5 метра) или вертикальных геотермальных скважин, глубиной до 100 метров.

Горизонтальный геотермальный контур теплового насоса «грунт-вода». Изображение — «Энергео»Вертикальный геотермальный контур теплового насоса «грунт-вода». Изображение — «Энергео»

Окружающий воздух является наиболее доступным источником низкопотенциальной теплоты для теплового насоса «воздух-вода». Одним из его преимуществ является более простая схема монтажа оборудования в систему с уже установленным любым дополнительным источником тепла (например, дизельным или твердотопливным котлом).

«Воздух-вода». Изображение — «Энергео»

Эффективность использования теплового насоса определяется коэффициентом преобразования или коэффициентом трансформации (обозначается как СОР). Для современных тепловых насосов величина СОР может достигать 5−5,5. Значение СОР = 5 показывает, что при подводе к тепловому насосу 1 кВт электрической энергии можно получить 5 кВт тепла.

Стоит отметить, что тепловые насосы обеспечивают не только отопление и горячее водоснабжение, но и охлаждение дома летом.